Interaction of forskolin with voltage-gated K+ channels in PC12 cells.

نویسندگان

  • S S Garber
  • T Hoshi
  • R W Aldrich
چکیده

Forskolin (FSK) directly blocks a distinct class of voltage-dependent K+ channels in pheochromocytoma cells. We have studied the biophysical mechanism of FSK action on these channels. The mean open duration decreased linearly with [FSK], indicating that a single molecule of FSK interacts with a single open K+ channel. FSK did not alter the voltage dependence of activation or the latency to first opening. Whole-cell currents in the presence of FSK did not show a rising phase in tail currents, suggesting that FSK-bound channels can close. We used a kinetic scheme in which FSK binds preferentially to the open state of the channel to describe its interaction with the K+ channel. This scheme is analogous to the modulated receptor hypothesis used to describe the interaction of local anesthetics with voltage-dependent Na+ channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of functional voltage-gated sodium channels in persistent mumps virus-infected PC12 cells.

Rat pheochromocytoma (PC12) cells, persistently infected with mumps virus (MV), failed to generate full-sized stimulus-evoked action potentials (SEAPs) when examined by intracellular electrophysiological recording techniques. Application of tetrodotoxin (TTX) had little or no effect on MV-reduced SEAPs, indicating that the number of functional voltage-gated Na+ channels was decreased or their o...

متن کامل

Effect of forskolin on voltage-gated K+ channels is independent of adenylate cyclase activation.

Forskolin is commonly used to stimulate adenylate cyclase in the study of modulation of ion channels and other proteins by adenosine 3',5'-monophosphate (cAMP)-dependent second messenger systems. In addition to its action on adenylate cyclase, forskolin directly alters the gating of a single class of voltage-dependent potassium channels from a clonal pheochromocytoma (PC12) cell line. This alte...

متن کامل

The Blocking Activity of Different Toxins against Potassium Channels Kv3.4 in RLE Cells

Background: K+ channel toxins are essential tools for the first purifications, analysis of subunit structures and brain localization of voltage-gated K+ (Kv) channels. The effects of a lot of toxins on Kv are not fully known. Methods: Using whole-cell patch clamping technique the action of a series of toxins on Kv3.4 current in rat liver cells with expressed Kv3.4 channels (RLE) cloned cells wa...

متن کامل

Direct Interaction of Endogenous Kv Channels with Syntaxin Enhances Exocytosis by Neuroendocrine Cells

K(+) efflux through voltage-gated K(+) (Kv) channels can attenuate the release of neurotransmitters, neuropeptides and hormones by hyperpolarizing the membrane potential and attenuating Ca(2+) influx. Notably, direct interaction between Kv2.1 channels overexpressed in PC12 cells and syntaxin has recently been shown to facilitate dense core vesicle (DCV)-mediated release. Here, we focus on endog...

متن کامل

Voltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom

Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 10 10  شماره 

صفحات  -

تاریخ انتشار 1990